
NUMERICAL CALCULATION OF GROWTH OF A GAS BUBBLE FROM A SOLUTION 
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The problem of growth of a solitary gas bubble from a solution is considered, 
and a method is presented for numerical solution. 

We will formulate the basic mathematical relationships describing the process of growth 
of a single gas bubble of spherical form from a solution with an initial content of dis- 
solved gas Co. The equation of convective gas diffusion in the liquid in a spherical coordi- 
nate system centered at the bubble nucleus has the form 

#c _ 1 0 ( OC 
r"  - - - ,  ( 1 )  

at  r ~ Or ,, gr / ar  

where D i s  the d i f f u s i o n  c o e f f i c i e n t ;  C = C(r ,  t ) ,  gas concen t ra t i on  i n  so l ven t ;  5 ( t ) ,  c u r -  
r en t  bubble rad ius ;  v ( r ,  t ) ,  v e l o c i t y  of  l i q u i d  f l ow  produced by bubble growth.  From the 
c o n t i n u i t y  equat ion  we c a n  e a s i l y  o b t a i n  the law of  change i n  v e l o c i t y  as a f u n c t i o n  of  coor -  
d ina te  r and time t 

v(r, t )=  ' ~  d~ (2) 
r 2 d t  

S i n c e  b u b b l e  g rowth  o c c u r s  due t o  t r a n s p o r t  o f  gas  w i t h i n  t h e  l i q u i d  t o  t h e  l i q u i d - - v a p o r  
p h a s e  b o u n d a r y ,  f r om t h e  mass b a l a n c e  e q u a t i o n  t h e  f o l l o w i n g  c o n d i t i o n s  f o l l o w ,  r e l a t i n g  t h e  
change  i n  g a s  mass c o n t e n t  i n  t h e  b u b b l e  t o  mass f l o w  i n  t h e  l i q u i d  p h a s e  a t  t h e  b o u n d a r y  r = 
~ ( t )  : 

1 d (p~3) = D  0C I " (3) 
3~ 2 d t  Or r=[(t) 

In  t h e  f u t u r e  we w i l l  assume t h e  gas  i d e a l ;  t h e n  i n  c o r r e s p o n d e n c e  w i t h  t h e  e q u a t i o n  o f  
s t a t e  t h e  r e l a t i o n s h i p  b e t w e e n  d e n s i t y  p and gas  p r e s s u r e  P i n  t h e  b u b b l e  w i l l  have  t h e  form 

M P  (4) 
RT 

where M is the molecular weight of the gas; R, universal gas constant; and T, absolute tem- 
perature. 

The second condition at the interphase boundary follows from the balance of forces act- 
ing on the bubble from the direction of the liquid (the liquid pressure P' at the point of 
bubble formation, including hydrostatic pressure of the liquid column and the pressure above 
the solution, the surface tension force, viscosity force, and inertial force of the liquid 
mass) and the forces directed from the bubble toward the liquid, i.e., the gas pressure P 
in the bubble. At moderate bubble growth rates the inertial force of the liquid mass may be 
neglected [2]. Then the force balance equation may be written in the form 

1 d~ 2a 
P= P'  + 4 F - -  - - + - - ,  (5) 

at 

where ~ is the coefficient of dynamic viscosity and o is the surface tension coefficient. 
Moreover, the gas pressure within the bubble and the dissolved gas concentration at the bound- 
ary with the vapor phase will be assumed to be related by the Siberts law 

C(~,, t) ----- xV-P,, (6) 
where x is the solubility constant. 

It follows from Eq. (5) that the critical bubble radius ~o satisfies the relationship 
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2a 1 ( 7 )  
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" P0 1 - - ~  

P0 
where Po is the pressure of the gas in equilibrium with a liquid of composition Co (defined by 
Eq. (6)). The necessary condition for nucleus formation, as follows from Eq. (7), is 

Po>P'. 
In particular, at P' = 0 the critical bubble radius ~o will be 

2~ 

~b = �9 ( 7 ' )  
P0 

At  t h e  i n i t i a l  moment o f  t i m e  we w i l l  assume t h e  We will now formulate initial conditions. 
liquid phase composition constant 

C (r, O) = Co, (8) 

and the bubble radius equal to the critical value* 

~(0) - -  ~ .  (9 )  

Moreover, in the liquid at a sufficiently large distance L from the bubble we will assume 
the condition 

C ( L ,  t) - -  Co (i0) 

to be fulfilled. 

The unknowns in the problem of Eqs. (i)-(9) are the functions C(r, t), v(r, t), P(t), 
together with the bubble growth law, i.e., the function ~ = ~(t). In contrast to the classi- 
cal Stefan problem, the value of the desired function C(r, t) on the interphase boundary is 
unknown and subject to definition. 

We introduce the dimensionless parameters 

= W~v, C = C/Co, P = PlPo, ~= '~--.J~b. (Ii) 

R e p l a c i n g  t h e  d i m e n s i o n e d  c h a r a c t e r i s t i c s  o f  E q s . ( 1 ) - ( l O )  by  d i m e n s i o n l e s s  o n e s ,  i t  c an  b e  
shown that the solution depends on the following dimensionless characteristics: 

Fo = D t l ~ ,  PT --  po/Co, P~ ~ Pol P ' ,  Ta = ~ D P '  la*. (12 )  

The parameter Ps characterizes the degree of solution supersaturation relative to the 
external pressure; the parameter PT (also expressable as PT = RT~2/MCo) is a characteristic 
of the conditions of thermodynamic equilibrium between vapor phase and solution. 

The parameter Ta is a measure of the ratio of the force characteristics (viscosity and 
surface tension) to diffusion, and characterizes the similarity of bubble growth conditions 
on the vapor--liquid boundary. 

We will omit the rewriting of Eqs. (i)-(i0) using the dimensionless parameters of Eqs. 
(ii), (12), but use the defining parameters of Eq. (12) to process the results of numerical 
experiment. 

As is well known, numerical integration of the equations of heat and mass transfer with 
convective terms is plagued by difficulties connected with replacement of the first deriva- 
tive by difference relationships, so that approximation by one-sided differences (depending 
on the sign, right- or left-handed) is unsatisfactory with respect to accuracy of the solu- 
tion obtained, while use of the central difference leads to a nonmonotonic difference scheme. 
Samarskii [i] has proposed a monotonic scheme for solution of a parabolic equation, based on 
perturbation of the divergent term in the equation, and ensuring second-order accuracy. 

In the present study, for the difference approximation of Eq. (i) a movable Lagrangian 
network was used, upon which the approximation of the left side of Eq. (i) can be accomplished 
in an especially simple manner. 

Let m(k){r~k), i = i, 2, ..., N} be the set of network node points at the time t = tk, 
with r(k) = ~(t~). 

1 

*Condition (9) is a condition of unstable equilibrium, so that in numerical calculations the 
initial bubble radius is taken larger than critical by a sufficiently small value. 
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Fig. i. Relative nucleus radius vs Ps" 

Fig. 2. Relative bubble radius vs. Fo for various Ps at 
PT = i0: i) Ps = 1.5; 2) 2; 3) 3. 

Then the coordinates of the network nodes at time t = tk+ 1 = t k + T k can be calculated 
in the following manner: 

r~k+ x ) = r~k) + % v ~ +  '), ( t 3) 

where T k is the step in time; v (k+l) = v(r(i k+l), tk+l) is the velocity of liquid motion at a 
point with radius r~ k+l) at the time t = tk+ I. 

We write Eq. (i) in the form 

where d/dt indicates the substant ia l  der iva t ive ,  then approximate th is  equation on the net-  
work ~ (k+l) 

Ci --~-------L = - - 1 ~  r[ h~il [di + -~-i (r~ H-0"Shl")2.ht.l " ( C i §  { r t -  0"5h~)2j~ (Ci --  Ct_l) ] . (14) 

Here C i = Ci(r~k+l) , tk+l), ~ = C(r k), tk ), h i = r1(k+l) -- r I), hi+l = ri+l _ , 
~i = 0"5(hi+l + hi)" The coefficients of the difference equation di+~/=, di_t/2 are calcu- 
lated by the method proposed in [i]. 

We introduce a certain standard step h and require that the positions of the liquid-- 
vapor phase boundary at the times t = tk+ 1 and t = t k differ by the standard step, i.e., we 
assume that 

Let T k be the time step at which the boundary is displaced by the standard step. Then in 
accordance with Eq. (2) the velocity of liquid motion at node points of the network w(k+l) 
{r (k+l), i = i, 2, ..., N} can be calculated in the following manner: 

v~k+,,__ _(~('~+,) )' h gk+,~ --~k (15) 

We write the difference analog of conditions (3), (5), and (6) 

p(k+;) ~(k+l) 
l p(t,+,)g+l __p(a) g = d 3 ~-2 --~l g+l, (16) 
3 Tj, -~-  h(2 ~+~ ) 

I h 2~ (17) 
Pk+i = V + 4# -- ~ , 

c~ ~+''= ~ V~§ (18) 

where ~k+l = $(tk+l); Pk+l = P(tk+l); P(k+l) = MPk+I/RT. 
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Fig. 3. Dimensionless bubble growth rate vs. Fo for various Ps at 
PT = lO: i) Ps = 1.5; 2) 2; 3) 3. 

Fig. 4. Relative gas pressure in bubble vs. Fo for various Ps at 
PT = i0: i) Ps = 3; 2) 2; 3) 1.5. 

Combining with Eqs. (13)-(18) difference relationships for initial conditions (8), (9) 
and boundary condition (I0), at each time step we obtain a system of nonlinear difference 
equations for determination of concentration at network nodes, gas pressure in the bubble, liquid 
motion velocity, and the displacement rate of the interphase boundary. For solution of this 
nonlinear algebraic problem we construct an iteration process,, in the following manner. We 
choose as the initial approximation for the time step T~ z) its value in the preceding time 
laver, then calculate with Eqs. (13), (15), (17) the first approximations for the network 
m(k+l), velocites v~k+l), and pressure Pk+l" Then using Eq. (18) and the difference analog 
of condition (10), we solve the system of nonlinear algebraic equations (14) by the drive 
method. The following approximation for the time step is defined by Eq~ (16) 

- -  | ! ~ ~k  J ] ,S  

3n(k+l)rc(k~Z ) c(k+l } 2 ' 
3 [ 2,~ - -  z.s ] ~ h + z  

w h e r e  t h e  i n d e x  s i n  t h e  n o t a t i o n  f o r  c o n c e n t r a t i o n s ,  d e n s i t y ,  and  s p a t i a l  n e t w o r k  s t e p  h k + l )  
i n d i c a t e s  t h a t  t h e s e  v a l u e s  a r e  t a k e n  f r o m  t h e  s - t h  i t e r a t i o n .  

The  s e q u e n c e  o f  c a l c u l a t i o n s  d e s c r i b e d  a b o v e  i s  r e p e a t e d  u n t i l  

l l  
Thus, at each step of the iteration process there occurs a readjustment of the spatial 

network m(k+l). When the iteration process converges, then the network will be structured in 
accordance with the calculated instantaneous velocity of bubble motion and the liquid velocity 
field. 

It follows from Eqs. (7), (7'), (ii) that the relative radius of_the nucleus depends only 
on the dimensionless quantity Ps. Figure i shows the dependence of ~o on Ps" 

Analysis of the range of variation of the defining parameters of Eq, (12) for hydrogen 
and nitrogen dissolved in metals reveals that the parameter Ta changes within the limits 
i0-~-I0 -6, i.e., is insignificant, so that it may be neglected in further analysis. 

Of the two parameters Ps and PT, Ps proves to have the greater effect on the dimension- 
less characteristics (in dimensioned units this is the degree of solution supersaturation). 

Figures 2-4 present the depende_nce of relative bubble radius ~, relative bubble growth 
rate d~/dFo, and relative pressure P upon Fourier number for various values Of the parameters 
Ps and PT- 

One should note the nonmonotonic character of the dimensionless bubble growth rate as a 
function of Fo, where with increase in Ps and PT the maximum in dimensionless growth rate in- 
creases and shifts toward lower Fo. 
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BUBBLE DEFORMATION IN AN ELECTRIC FIELD 

S. M. Korobeinikov UDC 541.123:537.528 

The problem of expansion of bubbles in a compressible liquid upon application of 
an electric field is solved. The effect of the electric field on phase transi- 
tion is evaluated. 

It has been experimentally established [i, 2] that under the influence of an electric 
field bubbles and droplets suspended in a dielectric field expand in the direction along the 
field independent of the ratio between dielectric permittivities of the medium sa and the in- 
clusions al. A theoretical description of this effect is of interest in refining the pe- 
culiarities of heat exchange in an electric field [3]. 

The existing calculations of bubble deformation [i, 2] do not agree with experimental 
results without the assumption that the electrostriction pressure in the liquid is "ficti- 
tious" [i] or that the coefficient of liquid surface tension is strongly dependent on the 
electric field vector [2]. 

We will demonstrate that consideration of the compressibility of the liquid in solution 
of the equation of equilibrium of the interphase boundary leads to results which agree quali- 
tatively with experimental data 

where p~, P= a re  d e n s i t i e s ;  P~, P2, p r e s s u r e s ;  E ta ,  Enz, t a n g e n t i a l  and normal components of  
the field within the inclusion on the boundary with the medium; E~, Ea, field intensities; 
6, surface tension; RI, R2, major radii of curvature of the surface. 

In contrast to the case of an incompressible liquid Eq. (i) is insufficient for deter- 
mination of the bubble deformation, since the liquid density becomes variable in an inhomo- 
geneous electric field as produced by the bubble. Electrostriction causes flow of some of 
the liquid from a region of weak field to a region of strong field, with the density and hy- 
drostatic pressure increasing at the equator and decreasing at the poles of the bubble in com- 
parison to the analogous parameters far from the bubble. After establishment of a stationary 
state the pressure distribution is described by the equation [4] 

o~ ~oE~ = po, (2) 
P~ (~) -- ~ o~ 2 

where Po is a quantity dependent on the geometry of the electrode system creating the field, 
and the conditions at the boundary of the liquid volume. In experiments, apparently, case 
(a) is often realized, ~ wherein the field occupies a small portion of the liquid volume and 
liquid flow is not inhibited at all. Then Po is equal to the hydrostatic pressure Pex, exist- 
ing in the liquid before field application. In case (b), where the influx of liquid is im- 
possible or has not occurred 

Po = ~ x - - ~  0~2 8~ (3) 
O~ 2 
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